Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Med Virol ; 95(2): e28503, 2023 02.
Article in English | MEDLINE | ID: covidwho-2173247

ABSTRACT

The hepatitis B virus core antigen (HBcAg) tolerates insertion of foreign epitopes and maintains its ability to self-assemble into virus-like particles (VLPs). We constructed a ∆HBcAg-based VLP vaccine expressing three predicted severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B and T cell epitopes and determined its immunogenicity and protective efficacy. The recombinant ∆HBcAg-SARS-CoV-2 protein was expressed in Escherichia coli, purified, and shown to form VLPs. K18-hACE2 transgenic C57BL/6 mice were immunized intramuscularly with ∆HBcAg VLP control (n = 15) or ∆HBcAg-SARS-CoV-2 VLP vaccine (n = 15). One week after the 2nd booster and before virus challenge, five ∆HBcAg-SARS-CoV-2 vaccinated mice were euthanized to evaluate epitope-specific immune responses. There is a statistically significant increase in epitope-specific Immunoglobulin G (IgG) response, and statistically higher interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) expression levels in ∆HBcAg-SARS-CoV-2 VLP-vaccinated mice compared to ∆HBcAg VLP controls. While not statistically significant, the ∆HBcAg-SARS-CoV-2 VLP mice had numerically more memory CD8+ T-cells, and 3/5 mice also had numerically higher levels of interferon gamma (IFN-γ) and tumor necrosis factor (TNF). After challenge with SARS-CoV-2, ∆HBcAg-SARS-CoV-2 immunized mice had numerically lower viral RNA loads in the lung, and slightly higher survival, but the differences are not statistically significant. These results indicate that the ∆HBcAg-SARS-CoV-2 VLP vaccine elicits epitope-specific humoral and cell-mediated immune responses but they were insufficient against SARS-CoV-2 infection.


Subject(s)
COVID-19 , Vaccines, Virus-Like Particle , Mice , Animals , Hepatitis B Core Antigens/genetics , Hepatitis B virus/genetics , Epitopes, T-Lymphocyte , SARS-CoV-2 , Mice, Inbred C57BL , Immunity, Cellular , Recombinant Proteins
2.
Methods Cell Biol ; 168: 329-341, 2022.
Article in English | MEDLINE | ID: covidwho-1628694

ABSTRACT

As more infectious viruses emerge that result in respiratory illness, there is a significant need to standardize airway harvests and maximize data acquisition. Animal models of respiratory viral infections have been outlined to allow for the analysis of the host immune response and viral pathogenesis kinetics. This chapter outlines two separate tissue harvest protocols following the intranasal infection of mice to investigate both the host immune response and viral pathogenesis. These protocols combine standard laboratory techniques for the analysis of the samples, making it easily integrable for labs without the need for specialized training. In offering two separate yet parallel tissue collection techniques, investigators can ultimately decide which technique will yield the best data for their particular research questions and can maximize data from each animal study.


Subject(s)
Pneumonia , Viruses , Animals , Immunity , Mice
3.
Viruses ; 13(6)2021 06 03.
Article in English | MEDLINE | ID: covidwho-1259622

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible RNA virus that is the causative agent of the Coronavirus disease 2019 (COVID-19) pandemic. Patients with severe COVID-19 may develop acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) and require mechanical ventilation. Key features of SARS-CoV-2 induced pulmonary complications include an overexpression of pro-inflammatory chemokines and cytokines that contribute to a 'cytokine storm.' In the current study an inflammatory state in Calu-3 human lung epithelial cells was characterized in which significantly elevated transcripts of the immunostimulatory chemokines CXCL9, CXCL10, and CXCL11 were present. Additionally, an increase in gene expression of the cytokines IL-6, TNFα, and IFN-γ was observed. The transcription of CXCL9, CXCL10, IL-6, and IFN-γ was also induced in the lungs of human transgenic angiotensin converting enzyme 2 (ACE2) mice infected with SARS-CoV-2. To elucidate cell signaling pathways responsible for chemokine upregulation in SARS-CoV-2 infected cells, small molecule inhibitors targeting key signaling kinases were used. The induction of CXCL9, CXCL10, and CXCL11 gene expression in response to SARS-CoV-2 infection was markedly reduced by treatment with the AKT inhibitor GSK690693. Samples from COVID-19 positive individuals also displayed marked increases in CXCL9, CXCL10, and CXCL11 transcripts as well as transcripts in the AKT pathway. The current study elucidates potential pathway specific targets for reducing the induction of chemokines that may be contributing to SARS-CoV-2 pathogenesis via hyperinflammation.


Subject(s)
COVID-19/immunology , Chemokine CXCL10/genetics , Chemokine CXCL11/genetics , Chemokine CXCL9/genetics , Proto-Oncogene Proteins c-akt/metabolism , Up-Regulation , Angiotensin-Converting Enzyme 2/genetics , Animals , Cell Line , Chemokine CXCL10/immunology , Chemokine CXCL11/immunology , Chemokine CXCL9/immunology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/immunology , Epithelial Cells/immunology , Epithelial Cells/virology , Female , Humans , Inflammation , Lung/cytology , Mice , Mice, Transgenic , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/genetics , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL